Abstract

In this study, we examine the effect of surrounding liquid on the motion of gravity-driven drops through a round-edged circular orifice using high-speed visualization and refractive index matched PIV. The overall motion of the drop is separated into three stages: pre-impact, penetration and release. We show that in liquid/liquid systems, the surrounding fluid influences the drop velocity during both pre-impact and release stages. During the pre-impact stage, the drop approaches the orifice by displacing the surrounding liquid radially across the plate as well as axially through the orifice. During the release stage on the other hand, surrounding fluid is drawn downward into the orifice as the drop exits below the plate. In both cases, the drop decelerates due to added mass and viscous effects, which are negligible in liquid/gas flows. Drop breakup is promotedby a higher viscosity surrounding such that the volume of the satellite drop increases when the drop-to-surrounding-fluid viscosity ratio is decreased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.