Abstract

Droop models of nutrient–phytoplankton–zooplankton interaction with intratrophic predation of zooplankton are introduced and investigated. The models proposed in this study are open ecosystems which include both a constant and a periodic input nutrient models. A simple stochastic model mimics a randomly varying nutrient input is also presented. For the deterministic models it is shown analytically that intratrophic predation has no effect on the global asymptotic dynamics of the systems if either one of the populations has a negative growth rate. Numerical simulations are also used to investigate the effects of intratrophic predation. Unlike the deterministic models for which both populations can coexist with each other if populations’ net growth rates are positive, plankton populations can become extinct if the input nutrient concentration is varied randomly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.