Abstract

Rechargeable battery banks have been widely utilised in islanded microgrids as energy storage systems to complement the instant power imbalance in real-time. However, the cycle degradation becomes an unavoidable concern of the battery energy storage systems (BESSs) in achieving microgrid economic dispatch (ED). In this study, a novel degradation cost model based on an online auction algorithm is proposed for real-time management of BESS. To settle the intermittent distributed sources in real-time operation, a Wasserstein ambiguity set is adopted to characterise the uncertainties. Meanwhile, the authors newly reformulate the real-time microgrid ED as a two-stage distributionally robust optimisation (DRO) problem. To improve the tractability and scalability of the DRO problem, a model predictive control (MPC)-based data-driven approach is proposed, in which a novel affine policy namely extended event-wise affine adaption is properly employed. Through extensive case studies, the numerical results demonstrate the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.