Abstract

Rain can significantly impair the driver’s sight and affect his performance when driving in wet conditions. Evaluation of driver visibility in harsh weather, such as rain, has garnered considerable research since the advent of autonomous vehicles and the emergence of intelligent transportation systems. In recent years, advances in computer vision and machine learning led to a significant number of new approaches to address this challenge. However, the literature is fragmented and should be reorganised and analysed to progress in this field. There is still no comprehensive survey article that summarises driver visibility methodologies, including classic and recent data-driven/model-driven approaches on the windshield in rainy conditions, and compares their generalisation performance fairly. Most ADAS and AD systems are based on object detection. Thus, rain visibility plays a key role in the efficiency of ADAS/AD functions used in semi- or fully autonomous driving. This study fills this gap by reviewing current state-of-the-art solutions in rain visibility estimation used to reconstruct the driver’s view for object detection-based autonomous driving. These solutions are classified as rain visibility estimation systems that work on (1) the perception components of the ADAS/AD function, (2) the control and other hardware components of the ADAS/AD function, and (3) the visualisation and other software components of the ADAS/AD function. Limitations and unsolved challenges are also highlighted for further research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.