Abstract
Our study aimed to explore the applicability of deep learning and machine learning techniques to distinguish MPE from BPE. We initially used a retrospective cohort with 726 PE patients to train and test the predictive performances of the driverless artificial intelligence (AI), and then stacked with a deep learning and five machine learning models, namely gradient boosting machine (GBM), extreme gradient boosting (XGBoost), extremely randomized trees (XRT), distributed random forest (DRF), and generalized linear models (GLM). Furthermore, a prospective cohort with 172 PE patients was applied to detect the external validity of the predictive models. The area under the curve (AUC) in the training, test and validation set were deep learning (0.995, 0.848, 0.917), GBM (0.981, 0.910, 0.951), XGBoost (0.933, 0.916, 0.935), XRT (0.927, 0.909, 0.963), DRF (0.906, 0.809, 0.969), and GLM (0.898, 0.866, 0.892), respectively. Although the Deep Learning model had the highest AUC in the training set (AUC = 0.995), GBM demonstrated stable and high predictive efficiency in three data sets. The final AI model by stacked ensemble yielded optimal diagnostic performance with AUC of 0.991, 0.912 and 0.953 in the training, test and validation sets, respectively. Using the driverless AI framework based on the routinely collected clinical data could significantly improve diagnostic performance in distinguishing MPE from BPE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.