Abstract
Motivated by recent photoemission experiments on the surface of topological insulators we compute the spectrum of driven topological surface excitations in the presence of an external light source. We completely characterize the spectral function of these nonequilibrium electron excitations for both linear and circular polarizations of the incident light. We find that in the latter case, the circularly polarized light gaps out the surface states, whereas linear polarization gives rise to an anisotropic metal with multiple Dirac cones. We compare the sizes of the gaps with recent pump-probe photoemission measurements and find good agreement. We also identify theoretically several new features in the time-dependent spectral function, such as shadow Dirac cones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.