Abstract

The heterostructure technique has recently demonstrated an excellent solution to resolve the trade-off between on- and off-state currents in tunnel field-effect transistors (TFETs). This paper shows the weakness of abrupt heterojunctions and explores the physics of drive current enhancement as well as generalizes the proposed graded heterojunction approach in both n-type and p-type TFETs. It is shown that the presence of thermal emission barriers formed by abrupt band offsets is the physical reason of the on-current lowering observed in abrupt heterojunction TFETs. By employing graded heterojunctions in TFETs, the thermal emission barriers for electrons and holes are completely eliminated to narrow the tunnel widths in n-type and p-type TFETs, respectively. With the significant improvement in on-current, this novel approach of graded heterojunctions provides an effective technique for enhancing the drive current in heterostructure-based TFET devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.