Abstract

Bismuth telluride (Bi2Te3)-based alloys have been extensively employed in energy harvesting and refrigeration applications for decades. However, commercially produced Bi2Te3-based alloys using the zone-melting (ZM) technique often encounter challenges such as insufficient mechanical properties and susceptibility to cracking, particularly in n-type Bi2Te3-based alloys, which severely limit the application scenarios for bismuth telluride devices. In this work, we seek to enhance the mechanical properties of n-type Bi2Te2.7Se0.3 alloys while preserving their thermoelectrical performance by a mixed mechanism of grain refinement and the TiN composite phase-introduced pinning effect. These nanoscale processes, coupled with the addition of TiN, result in a reduction in grain size. The pinning effects of nano-TiN contribute to increased resistance to crack propagation. Finally, the TiN-dispersed Bi2Te2.7Se0.3 samples demonstrate increased hardness, bending strength and compressive strength, reaching 0.98 GPa, 36.3 MPa and 74 MPa. When compared to the ZM ingots, those represent increments of 181%, 60% and 67%, respectively. Moreover, the thermoelectric performance of the TiN-dispersed Bi2Te2.7Se0.3 samples is identical to the ZM ingots. The samples exhibit a peak dimensionless figure of merit (ZT) value of 0.957 at 375 K, with an average ZT value of 0.89 within the 325-450 K temperature range. This work has significantly enhanced mechanical properties, increasing the adaptability and reliability of bismuth telluride devices for various applications, and the multi-effect modulation of mechanical properties demonstrated in this study can be applied to other thermoelectric material systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.