Abstract

AbstractShear‐lag analysis is used to obtain closed‐form solutions for the problem of a stiff inclusion embedded in a poroelastic soil matrix. The following assumptions are made: the soil matrix and the inclusion are elastic; plane strain conditions apply; and shear stresses at the soil‐inclusion interface follow Coulomb's friction law. Two solutions are obtained, the first one for drained conditions where no excess pore pressures are generated, and the second one for undrained conditions where excess pore pressures are produced and the soil does not change volume during pullout. The solutions are verified by comparing analytical predictions with numerical results obtained using a finite element method. Predictions from the analytical solutions are also compared with results from experiments conducted in a large‐scale pullout box. Both comparisons show good agreement. The analytical solution shows that the pullout capacity in drained and undrained conditions is overall independent of the relative stiffness of the soil and the inclusion. The most important factor controlling the pullout capacity is the coefficient of friction between the soil and the inclusion. Both drained and undrained pullout capacities increase with the coefficient of friction; although the drained capacity shows a proportional increase, it is not so for the undrained capacity. The ratio of undrained to drained pullout capacity is about 0.9 for friction coefficients smaller than 0.2, but can be as small as 0.6 for a coefficient of friction of 1.0. Copyright © 2006 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.