Abstract

Controlling microrobot locomotion in vessels and capillaries is crucial for precise drug delivery and minimally invasive surgeries. However, this is challenging due to the complex interactions with red blood cells (RBCs) and the difficulty navigating within the dense environment. Here, we construct a numerical framework to evaluate the relative resistance coefficient (Cr*\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${C}_{{{{{{{{\\rm{r}}}}}}}}}^{* }$$\\end{document}) of a microrobot propelled through RBC suspensions. Our experiments validate the numerical results. We find that Cr*\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${C}_{{{{{{{{\\rm{r}}}}}}}}}^{* }$$\\end{document} increases for smaller microrobots and higher hematocrit levels, while magnetic force strength weakly impacts Cr*\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${C}_{{{{{{{{\\rm{r}}}}}}}}}^{* }$$\\end{document}. Cr*\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${C}_{{{{{{{{\\rm{r}}}}}}}}}^{* }$$\\end{document} is smaller than the resistance coefficient of a macroscale robot estimated from the apparent viscosity of the RBC suspension. The aspect ratio of a prolate ellipsoidal microrobot influences Cr*\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${C}_{{{{{{{{\\rm{r}}}}}}}}}^{* }$$\\end{document} along its long-axis direction. Additionally, machine learning accurately predicts Cr*\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${C}_{{{{{{{{\\rm{r}}}}}}}}}^{* }$$\\end{document}. These insights could enhance the design and control of microrobots for medical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.