Abstract

Comparisons are made of experimental studies on the drag, at high Reynolds number, due to regular arrays of roughness elements of various shapes immersed in a turbulent boundary layer. Using a variant of Millikan's dimensional analysis, the form of the velocity profile is deduced in terms of the dimensions and concentration of the roughness elements. A drag formula results which is shown to be in good agreement with data. Available measurements of the partition of drag between the elements and the intervening surface indicates that equipartition occurs at quite low concentrations. The interaction between elements is then small, so that the drag coefficient of a typical roughness element is nearly constant. A re-examination of some of O'Loughlin's velocity-profile data, obtained below the tops of the roughness elements, suggests the existence of a nearly constant-stress layer scaled to the shear stress of the intervening surface. Above the roughness elements, the mean-velocity profile undergoes a transition to the form appropriate to the total shear stress exerted by the roughened surface. A formula is given which describes the one-dimensional velocity profile over the entire range, excluding the viscous sublayer on the intervening surface. The viscous sublayer appears to correspond quite closely to that on a smooth plate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.