Abstract

Bisphenol A (BPA) is one of the most abundant endocrine-disrupting compounds which is found in the aquatic environment. However, actual knowledge regarding the effect of plant-bacteria interactions on enhancing BPA removal is still lacking. In the present study, Dracaena sanderiana endophytic bacteria interactions were investigated to evaluate the effect of bacterial inoculation on BPA removal under hydroponic conditions. Two plant growth-promoting (PGP) bacterial strains, Bacillus thuringiensis and Pantoea dispersa, which have high BPA tolerance and can utilize BPA for growth, were used as plant inocula. P. dispersa-inoculated plants showed the highest BPA removal efficiency at 92.32 ± 1.23% compared to other inoculated and non-inoculated plants. This was due to a higher population of the endophytic inoculum within the plant tissues which resulted in maintained levels of indole-3-acetic acid (IAA) for the plant's physiological needs and lower levels of reactive oxygen species (ROS). In contrast, B. thuringiensis-inoculated plants had a lower BPA removal efficiency. However, individual B. thuringiensis possessed a significantly higher BPA removal efficiency compared to P. dispersa. This study provides convincing evidence that not all PGP endophytic bacteria-plant interactions could improve the BPA removal efficiency. Different inocula and inoculation times should be investigated before using plant inoculation to enhance phytoremediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.