Abstract

Based on the Porous Media Theory presented by de Boer, the governing differential equations for a layered space-axisymmetrical fluid-saturated porous elastic body are firstly established, in which the suitable interface conditions between layers are presented. Then, a differential quadrature element method (DQEM) is developed, and the DQEM and the second-order backward difference scheme are applied to discretize the governing differential equations of the problem in the spatial and temporal domain, respectively. In order to show the validity of the present analysis, the dynamic response of a fluid-saturated porous medium is analyzed, and the obtained numerical results are directly compared with the existing analytical results. The effects of the numbers of the elements and grid points on the convergence of the numerical results are considered. Finally, the dynamic characteristics of a layered fluid-saturated elastic soil cylinder subjected to a water pressure or a dynamic loading are studied, and the effects of material parameters are considered in detail. From the above numerical results, it can be found that the DQEM has advantages, such as little amount in computation, good stability and convergence as well as high accuracy, so it is a very efficient method for solving the problems in soil mechanics, especially such problems with discontinuities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.