Abstract

In this paper, we propose a deep neural network model to simulate the transient ultrasonic wave propagation in the 2D domain by implementing the Data driven-simulation-assisted-Physics learned AI (DPAI) model. The DPAI model consists of modified convolutional long short-term memory (ConvLSTM) with an encoder–decoder structure, which learns the representation of spatio-temporal dependence from input sequence data. The DPAI uses the data-driven approach to understand the underlying physics of elastic wave propagation in a medium. This model is trained with simulation-assisted finite element simulation datasets consisting of distributed single and multi-point excitation sources in the medium. The effectiveness of the proposed approach is demonstrated by modeling a wide range of scenarios in elastodynamic physics, such as multiple point sources, varying excitation parameters, and wave propagation in a large 2D domain. The trained DPAI model is tested and compared against FE modeling with respect to accuracy and computational time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.