Abstract

Two of the limitations associated with cancer treatment are the low efficacy and the high dose-related side effects of anticancer drugs. The purpose of the current study was to fabricate biocompatible multifunctional drug-loaded nanoscale moieties for co-therapy (chemo-photothermal therapy) with maximum efficacy and minimum side effects. Herein, we report in vitro anticancerous effects of doxorubicin (DOX) loaded on gold nanorods coated with the polyelectrolyte poly(sodium-4-styrenesulfonate) (PSS-GNRs) with and without NIR laser (808 nm, power density = 1.5 W/cm2 for 2 min) irradiation. The drug-loading capacity of PSS-GNRs was about 76% with a drug loading content of 3.2 mg DOX/mL. The cumulative DOX release significantly increased after laser exposure compared to non-irradiated samples (p < 0.05). The zeta potential values of GNRs, PSS-GNRs and DOX-PSS-GNRs were measured as 42 ± 0.1 mV, −40 ± 0.3 mV and 39.3 ± 0.6 mV, respectively. PSS-GNRs nanocomplexes were found to be biocompatible and showed higher photothermal stability. The DOX-conjugated nanocomplexes with NIR laser irradiation appear more efficient in cell inhibition (93%) than those without laser exposure (65%) and doxorubicin alone (84%). The IC50 values of PSS-GNRs-DOX and PSS-GNRs-DOX were measured as 7.99 and 3.12 µg/mL, respectively, with laser irradiation. Thus, a combinatorial approach based on chemotherapy and photothermal strategies appears to be a promising platform in cancer management.

Highlights

  • Despite the enormous advances in medical research, cancer is still the second most common cause of death worldwide from which 9.6 million people died in 2018 [1]

  • DOX-conjugated Gold nanorods (GNRs) and hyperthermia were employed as a treatment strategy for Hepatocellular carcinoma (HCC) cells

  • The prepared GNR suspension has a surplus of cytotoxic cetyltrimethylammonium bromide (CTAB), which was removed by repetitive cycles of centrifugation and re-dispersion

Read more

Summary

Introduction

Despite the enormous advances in medical research, cancer is still the second most common cause of death worldwide from which 9.6 million people died in 2018 [1]. The use of conventional chemotherapeutic agents in cancer treatment is limited due to several unwanted characteristics of poor solubility, broad bioavailability range, narrow therapeutic index, rapid elimination from systemic circulation, unselective site of action after oral/intravenous administration, and cytotoxic effects on normal tissues [6]. DOX-based chemotherapy is one of the main treatments for HCC but its efficacy is limited by pre-existing and acquired drug resistance due to long-term chemotherapy [9]. One approach is to selectively remove cancer cells using the advanced drug delivery systems. These carrier systems hold sufficient amounts of the drug with prolonged circulation time and sustained drug release at the tumor site [11]

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.