Abstract

Doxorubicin (Dox), an anthracycline antibiotic, is an anticancer drug that inhibits DNA replication and cellular metabolic processes in cancer cells with high proliferative potential. However, Dox causes severe side effects, including myocardial damage and heart failure, but the molecular mechanism underlying Dox-induced myocardial injury remains uncertain. In the present study, we evaluated the effects of Dox on the mitochondrial quality control system and regulation of mitochondrial respiration and autophagy in an in vitro rat myoblast H9c2 cell culture model using western blotting, immunohistochemistry, the Seahorse XF24 system, and flow cytometry. Our results showed that Dox did not impair the initiation of autophagic flux or the functions of lysosomes; however, Dox affected the mitochondrial quality control system, leading to a fission-dominant morphology and impaired regulation of mitochondrial respiration, thereby increasing oxidative stress and inhibited progression of autophagy, particularly the fusion of autophagosomes with lysosomes. This inhibition caused a significant decrease in the formation of autolysosomes and was responsible for the accumulation of dysfunctional mitochondria and subsequent increase in oxidative stress, eventually leading to increased myocardial cell death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.