Abstract

Abstract The most prominent winter storms in the eastern part of the Eastern Mediterranean are known as Cyprus cyclones. The surface wind speed is between 15–30 m s−1, and about five such cyclones occur in a typical winter. The cyclone radius is between 500 and 1500 km. The evolution of the sea structure under such atmospheric forcing is examined with a two-dimensional numerical model in the vertical cross section perpendicular to the shore line. Two distinct regions result in the sea. A downwelling zone near the coast, about 100 km wide, and a horizontally homogeneous zone in the open sea, where vertical mixing is the important dynamical process. In the open sea the final profiles turn out to be similar to those observed in the Levantine Intermediate Water (LIW) in their formation region. We suggest that the LIW forms in the region under the influence of these Cyprus cyclones. In the downwelling zone the 14°–17°C isotherms decline by more than 250 m. This water has the same T-S properties as the water in...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.