Abstract

NASA’s Soil Moisture Active Passive (SMAP) mission only retrieved ~2.5 months of 3 km near surface soil moisture (NSSM) before its radar transmitter malfunctioned. NSSM remains an important area of study, and multiple applications would benefit from 3 km NSSM data. With the goal of creating a 3 km NSSM product, we developed an algorithm to downscale SMAP brightness temperatures (TBs) using Cyclone Global Navigation Satellite System (CYGNSS) reflectivity data. The purpose of downscaling SMAP TB is to represent the spatial heterogeneity of TB at a finer scale than possible via passive microwave data alone. Our SMAP/CYGNSS TB downscaling algorithm uses β as a scaling factor that adjusts TB based on variations in CYGNSS reflectivity. β is the spatially varying slope of the negative linear relationship between SMAP emissivity (TB divided by surface temperature) and CYGNSS reflectivity. In this paper, we describe the SMAP/CYGNSS TB downscaling algorithm and its uncertainties and we analyze the factors that affect the spatial patterns of SMAP/CYGNSS β. 3 km SMAP/CYGNSS TBs are more spatially heterogeneous than 9 km SMAP enhanced TBs. The median root mean square difference (RMSD) between 3 km SMAP/CYGNSS TBs and 9 km SMAP TBs is 3.03 K. Additionally, 3 km SMAP/CYGNSS TBs capture expected NSSM patterns on the landscape. Lower (more negative) β values yield greater spatial heterogeneity in SMAP/CYGNSS TBs and are generally found in areas with low topographic roughness (<350 m), moderate NSSM variance (~0.01–0.0325), low-to-moderate mean annual precipitation (~0.25–1.5 m), and moderate mean Normalized Difference Vegetation Indices (~0.2–0.6). β values are lowest in croplands and grasslands and highest in forested and barren lands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.