Abstract
The optic atrophy 1 (OPA1) protein is an essential protein involved in the fusion of the mitochondrial inner membrane. Despite its high level of expression, the role of OPA1 in the heart is largely unknown. We investigated the role of this protein in Opa1(+/-) mice, having a 50% reduction in OPA1 protein expression in cardiac tissue. In mutant mice, cardiac function assessed by echocardiography was not significantly different from that of the Opa1(+/+). Electron and fluorescence microscopy revealed altered morphology of the Opa1(+/-) mice mitochondrial network; unexpectedly, mitochondria were larger with the presence of clusters of fused mitochondria and altered cristae. In permeabilized mutant ventricular fibres, mitochondrial functional properties were maintained, but direct energy channelling between mitochondria and myofilaments was weakened. Importantly, the mitochondrial permeability transition pore (PTP) opening in isolated permeabilized cardiomyocytes and in isolated mitochondria was significantly less sensitive to mitochondrial calcium accumulation. Finally, 6 weeks after transversal aortic constriction, Opa1(+/-) hearts demonstrated hypertrophy almost two-fold higher (P< 0.01) than in wild-type mice with altered ejection fraction (decrease in 43 vs. 22% in Opa1(+/+) mice, P< 0.05). These results suggest that, in adult cardiomyocytes, OPA1 plays an important role in mitochondrial morphology and PTP functioning. These properties may be critical for cardiac function under conditions of chronic pressure overload.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.