Abstract

This study is conducted to investigate the role of lncRNA urothelial carcinoma-associated 1 (UCA1) in the protection of dopaminergic neurons in Parkinson's disease (PD) through regulating the PI3K/Akt signaling pathway. PD rat model was induced by injection of 6-hydroxydopamine (6-OHDA) to damage the substantia nigra striatum. The successfully modeled PD rats were introduced with siRNA-negative control (NC) or UCA1-siRNA. The expression of UCA1 in neurobehavioral change, neuroinflammatory response and oxidative stress of PD rats were explored. The effect of UCA1 on the PI3K/Akt signaling pathway and downstream proteins IκBα and ERK was also investigated. The rats with PD exhibited aggregated neurobehavioral change, increased neuroinflammatory response and oxidative stress. Down-regulation of UCA1 up-regulated the expression of TH positive cells and DA content, reduced the apoptosis of substantia nigra neurons, the apoptosis of substantia nigra neurons and oxidative stress and improved the neuroinflammatory response in PD rats. Down-regulation of UCA1 inhibited the activation of the PI3K/AKT signaling pathway in substantia nigra of PD rats. Our study suggests that the downregulated lncRNA UCA1 ameliorates the damage of dopaminergic neurons, reduces oxidative stress and inflammation in PD rats through the inhibition of the PI3K/Akt signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.