Abstract
The papillomavirus E5 protein is localized in the endoplasmic reticulum (ER) and Golgi apparatus (GA) of the host cell. Transformed bovine fibroblasts expressing bovine papillomavirus (BPV) E5 are highly vacuolated and have a much enlarged, distorted and fragmented GA. Major histocompatibility complex class I (MHC I) is processed and transported to the cell surface through the GA. Given the cellular localization of E5 in the GA and the morphologically abnormal GA, we investigated the expression of MHC I in cells transformed by E5 from BPV-1 and BPV-4. Two cell lines were used: bovine cells that also express E6, E7 and activated ras, and NIH3T3 cells that express only E5. In addition, PalF cells acutely infected with a recombinant retrovirus expressing E5 were also examined. In contrast to non-transformed normal cells, or transformed cells expressing other papillomavirus proteins, cells expressing E5 do not express MHC I on their surface, but retain it intracellularly, independently of the presence of other viral or cellular oncogenes, or of whether the cells are long-term transformants or acutely infected. We conclude that expression of E5 prevents expression of MHC I to the cell surface and causes its retention within the cell. In addition, lower amounts of total MHC I heavy chain and of heavy chain RNA are detected in E5-transformed cells than in control cells. As surface expression of another glycosylated membrane protein, the transferrin receptor, is not affected, it appears that E5 targets MHC I with at least a degree of specificity. In papillomavirus lesions this effect would have important implications for antigen presentation by, and immunosurveillance of, virally infected cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.