Abstract

sEH (soluble epoxide hydrolase), which is encoded by the EPHX2 gene, regulates the actions of bioactive lipids, EETs (epoxyeicosatrienoic acids). Previously, we found that high-glucose-induced oxidative stress suppressed sEH levels in a hepatocarcinoma cell line (Hep3B) and sEH was decreased in streptozotocin-induced diabetic mice invivo. In the present study, we investigated the regulatory mechanisms underlying EPHX2 transcriptional suppression under high-glucose conditions. The decrease in sEH was prevented by an Sp1 (specificity protein 1) inhibitor, mithramycin A, and overexpression or knockdown of Sp1 revealed that Sp1 suppressively regulated sEH expression, in contrast with the general role of Sp1 on transcriptional activation. In addition, we found that AP2α (activating protein 2α) promoted EPHX2 transcription. The nuclear transport of Sp1, but not that of AP2α, was increased under high glucose concomitantly with the decrease in sEH. Within the EPHX2 promoter -56/+32, five Sp1-binding sites were identified, and the mutation of each of these sites showed that the first one (SP1_1) was important in both suppression by Sp1 and activation by AP2α. Furthermore, overexpression of Sp1 diminished the binding of AP2α by DNA-affinity precipitation assay and ChIP, suggesting competition between Sp1 and AP2α on the EPHX2 promoter. These findings provide novel insights into the role of Sp1in transcriptional suppression, which may be applicable to the transcriptional regulation of other genes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.