Abstract

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by chronic inflammation, lung tissue fibrotic changes and impaired lung function. Pulmonary fibrosis 's pathological process is thought to be influenced by macrophage-associated phenotypes. IPF treatment requires specific targets that target macrophage polarization. Cytokine-like 1(CYTL1) is a secreted protein with multiple biological functions first discovered in CD34+ haematopoietic cells. However, its possible effects on IPF progression remain unclear. This study investigated the role of CYTL1 in IPF progression in a bleomycin-induced lung injury and fibrosis model. In bleomycin-induced mice, CYTL1 is highly expressed. Moreover, CYTL1 ablation alleviates lung injury and fibrosis in vivo. Further, downregulating CYTL1 reduces macrophage M2 polarization. Mechanically, CYTL1 regulates transforming growth factor β (TGF-β)/connective tissue growth factor (CCN2) axis and inhibition of TGF-β pathway alleviates bleomycin-induced lung injury and fibrosis. In conclusion, highly expressed CYTL1 inhibits macrophage M2 polarization by regulating TGF-β/CCN2 expression, alleviating bleomycin-induced lung injury and fibrosis. CYTL1 could, therefore, serve as a promising IPF target.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.