Abstract

This paper is intended as an investigation of the solvability of Cauchy problem for doubly nonlinear evolution equation of the form $dv(t)/dt + \partial \lambda^t(u(t)) \in 3 f(t)$, $v(t) \in \partial \psi(u(t))$, 0 < $t$ < $T$, where $\partial \lambda^t$ and $\partial \psi$ are subdifferential operators, and @'t depends on t explicitly. Our method of proof relies on chain rules for t-dependent subdifferentials and an appropriate boundedness condition on $\partial \lambda^t$ however, it does not require either a strong monotonicity condition or a boundedness condition on $\partial \psi$. Moreover, an initial-boundary value problem for a nonlinear parabolic equation arising from an approximation of Bean's critical-state model for type-II superconductivity is also treated as an application of our abstract theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.