Abstract
This paper gives a review of doubling bifurcations of closed invariant curves. We also discuss the role of the curve-doubling bifurcations in the formation of chaotic dynamics. In particular, we study scenarios of the emergence of discrete Lorenz and Shilnikov attractors in three-dimensional Hénon maps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.