Abstract

We report our studies on using microwave-optical double-resonance (DR) spectroscopy for a high-performance Rb vapour-cell atomic clock in view of future industrial applications. The clock physics package is very compact with a total volume of only 0.8 dm3. It contains a recently in-house developed magnetron-type cavity and a Rb vapour cell. A homed-made frequency-stabilized laser system with an integrated acousto-optical-modulator (AOM) – for switching and controlling the light output power– is used as an optical source in a laser head (LH). The LH has the overall volume of 2.5 dm3 including the laser diode, optical elements, AOM and electronics. In our Rb atomic clock two schemes of continuous-wave DR and Ramsey-DR schemes are used, where the latter one strongly reduces the light-shift effect by separation of the interaction of light and microwave. Applications of the DR clock approach to more radically miniaturized atomic clocks are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.