Abstract
A novel population of cells that express typical immature neuronal markers including doublecortin (DCX+) has been recently identified throughout the adult cerebral cortex of relatively large mammals (guinea pig, rabbit, cat, monkey and human). These cells are more common in the associative relative to primary cortical areas and appear to develop into interneurons including type II nitrinergic neurons. Here we further describe these cells in the cerebral cortex and amygdala, in comparison with DCX+ cells in the hippocampal dentate gyrus, in three age groups of rhesus monkeys: young adult (12.3 ± 0.2 years, n = 3), mid-age (21.2 ± 1.9 years, n = 3) and aged (31.3 ± 1.8 years, n = 4). DCX+ cells with a heterogeneous morphology persisted in layers II/III primarily over the associative cortex and amygdala in all groups (including in two old animals with cerebral amyloid pathology), showing a parallel decline in cell density with age across regions. In contrast to the cortex and amygdala, DCX+ cells in the subgranular zone diminished in the mid-age and aged groups. DCX+ cortical cells might arrange as long tangential migratory chains in the mid-age and aged animals, with apparently distorted cell clusters seen in the aged group. Cortical DCX+ cells colocalized commonly with polysialylated neural cell adhesion molecule and partially with neuron-specific nuclear protein and γ-aminobutyric acid, suggesting a potential differentiation of these cells into interneuron phenotype. These data suggest a life-long role for immature interneuron-like cells in the associative cerebral cortex and amygdala in nonhuman primates.
Highlights
One of the most fundamental features of the brain is its plasticity, a constant interplay between neural structure, function and experience
OVERALL DISTRIBUTION OF DCX+ CELLS IN THE MONKEY FOREBRAIN DCX+ cells in the SGZ of the dentate gyrus were considerably common in the young adult group
These DCX+ cells were located along the junction of the amygdale to the whiter matter of the entorhinal cortex (Ent), appearing as a cellular band (Figures 2A,B)
Summary
One of the most fundamental features of the brain is its plasticity, a constant interplay between neural structure, function and experience. The associative cortical areas together with the amygdala and hippocampal formation, which are greatly expanded during late mammalian evolution, are the anatomic niches for many high-level cognitive functions (Krubitzer, 2009; Pierani and Wassef, 2009). Greater neuroplasticity is likely inherent with higher vulnerability to environmental and internal insults. In line with this notion, cellular deficits and structural changes in the associative cortical and limbic areas are associated with some neurological or neuropsychiatric disorders (e.g., mode disorders, schizophrenia, epilepsy, Alzheimer’s disease) in the adolescent, adult and aged human populations (Arendt, 2005; Di Cristo, 2007; Brambilla et al, 2008; Pavuluri and Passarotti, 2008; Siebzehnrubl and Blumcke, 2008)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.