Abstract

We construct a new realization of type-II seesaw for neutrino masses and baryon asymmetry by extending the standard model with one light and two heavy singlet scalars besides one Higgs triplet. The heavy singlets pick up small vacuum expectation values to give a suppressed trilinear coupling between the triplet and doublet Higgs bosons after the light singlet drives the spontaneous breaking of lepton number. The Higgs triplet can thus remain light and be accessible at the LHC. The lepton-number conserving decays of the heavy singlets can generate a lepton asymmetry stored in the Higgs triplet to account for the matter-antimatter asymmetry in the Universe. We further introduce stable gauge bosons from a hidden sector, which obtain masses and annihilate into the Higgs triplet after spontaneous breaking of the associated non-Abelian gauge symmetry. With Breit-Wigner enhancement, the stable gauge bosons can simultaneously explain the relic density of dark matter and the cosmic positron/electron excesses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.