Abstract
In a case of teaching an old dog a new trick, Boston College researchers have discovered how to merge two important chemical transformations involving widely used organoboron reagents into one. Liang Zhang, James P. Morken, and coworkers combined key steps of the Suzuki-Miyaura cross-coupling catalytic cycle with a stoichiometric metallate rearrangement process to generate a multicomponent catalytic reaction that delivers chiral products. This new concept, which they call conjunctive cross-coupling, could have major implications in the broad field of cross-coupling reactions (Science 2016, DOI: 10.1126/science.aad6080). Suzuki-Miyaura cross-coupling typically proceeds by insertion of a palladium catalyst into the carbon-halogen bond of an aryl halide electrophile (oxidative addition). This process is followed by a ligand passing from an organoboron reagent to palladium (transmetallation) and concluded by the catalyst coupling the aryl group and ligand together via formation of a new C–C bond and shedding the product molecule (reductive elimination). In contrast, noncatalytic
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.