Abstract

Bacillus amyloliquefaciens esterase (BAE) was applied to produce (R)-1-(3',4'-methylenedioxyphenyl)ethanol, a chiral drug intermediate. In this study, we improved the enantioselectivity of BAE by protein engineering instead of process engineering as used in our previous work. Saturation mutagenesis was carried out on eight positions of BAE based on structure modeling and substrate docking. A double substituted variant V10 (K358D/A396C) showed an excellent enantioselectivity without decreasing the activity. The functions of these two mutations (K358D and A396C) were investigated, revealing a synergic effect on the BAE enantioselectivity. Using the variant V10, enantiopure (R)-1-(3',4'-methylenedioxyphenyl)ethanol could be readily prepared in >97% ee, affording a high space-time yield (123gL(-1) day(-1)) and a high ratio of substrate/catalyst (40gg(-1)) in 1-L reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.