Abstract

The efficient removal of organic pollutants, especially pharmaceuticals, from aquatic environments has attracted great attentions. Application of green, multipurpose, and inexpensive compounds is being extensively favorite as adsorbent instead of the traditional chemicals or materials. In this study, sulfonated graphitic carbon nitride was modified with two ionic liquids of polyethyleneimine and choline chloride to create a novel nanocomposite (Sg-CN@IL2 NC) and to use for removal of methylparaben (MeP) from aqueous media. After confirmation of the successful synthesized using different methods, the effective parameters for MeP removal, such as initial MeP concentration, adsorbent dose, sonication time, and temperature, as well as their interactions, were experimentally examined and modeled using response surface methodology (RSM), generalized regression neural network (GRNN), and radial basis function neural network (RBFNN). The models were then optimized using desirability function analysis (DF) and genetic algorithm (GA). The results showed that MeP adsorption: a) can be explained more accurate and reliable using GRNN (AARD% = 11.67, MAE = 15.31, RAE % = 45.42, RRSE % = 55.18, MSE = 435.86, RMSE = 20.70, and R2 = 0.995) than the others; b) reached equilibrium within 7.0 min with a maximum uptake of 267.2 mg/g at a temperature of 45 °C and a neutral pH; c) followed from Freundlich (R2 = 0.999) isotherm and PSO kinetic (R2 = 0.95) models; d) is endothermic and spontaneous; e) is mainly due to π-π stacking, electrostatic and hydrogen bonding interactions. Moreover, Sg-CN@IL2 NC showed an appropriate reusability for up to five cycles. These findings demonstrate the potential of as-prepared NC as an excellent adsorbent for removal of MeP from aqueous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.