Abstract

Double forms are sections of the vector bundles ΛkT∗M⊗ΛmT∗M\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Lambda^{k}T^{\\ast}{\\cal{M}}\\otimes\\Lambda^{m}T^{\\ast}\\cal{M}$$\\end{document}, where in this work (M,g\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\cal{M},\\frak{g}$$\\end{document}) is a compact Riemannian manifold with boundary. We study graded second-order differential operators on double forms, which are used in physical applications. A combination of these operators yields a fourth-order operator, which we call a double bilaplacian. We establish the regular ellipticity of the double bilaplacian for several sets of boundary conditions. Under additional conditions, we obtain a Hodge-like decomposition for double forms, whose components are images of the second-order operators, along with a biharmonic element. This analysis lays foundations for resolving several topics in incompatible elasticity, most prominently the existence of stress potentials and Saint-Venant compatibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.