Abstract

The magnetic excitation spectra in the vicinity of the resonant peak, as observed by inelastic neutron scattering in cuprates, are studied within the memory-function approach. It is shown that at intermediate doping the superconducting gap induces a double dispersion of the peak, with an anisotropy rotated between the downward and upward branch. Similar behavior, but with a spin-wave dispersion at higher energies, is obtained for the low-doping case assuming a large pairing pseudogap.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.