Abstract

Hierarchical self-assembly of Pt(II) metallacycles for the construction of functional materials has received considerable research interest, owing to their potential to meet increasing complexity and functionality demands while being based on well-defined scaffolds. However, the fabrication of long-range-ordered Pt(II) metallacycle-based two-dimensional hierarchical self-assemblies (2D HSAs) remains a challenge, primarily because of the limitations of conventional orthogonal noncovalent interaction (NCI) motifs and the intrinsic characteristics of Pt(II) metallacycles, making the delicate self-assembly processes difficult to control. Herein, we prepare well-regulated Pt(II)-metallacycle-based 2D HSAs through a directed strategy involving double cation-π interactions derived from C3-symmetric hexagonal Pt(II) metallacycles and C2-symmetric sodium phenate monomers. Spatially confined arrays of planar Pt(II) metallacycles and the selective growth of self-assemblies at desired locations are achieved by employing strong cation-π driving forces with well-defined directionality as the second orthogonal NCI, realizing the bottom-up, three-stage construction of Pt(II)-metallacycle-based 2D HSAs. The resultant 2D HSAs are applied as dual-mode catalysis platforms, which are loaded with two different nanocatalysts, one promoting catalytic oxidation and the other promoting photocatalytic reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.