Abstract

Electrical dosimetry issues are discussed in relation to electrical stun devices (ESDs). A measure of effectiveness is based on a ‘threshold factor,’ FT, calculated with a myelinated nerve model that simulates stimulation of a reference-case neuron (20 µm diameter, 1 cm distant). Several ESDs were measured in the laboratory using resistive loads of 100–1000 Ω; some included air gaps bridged via an electric arc. Conducted current waveform parameters and the associated threshold factors depend on the resistance of the load. Thresholds were also determined for ideal monophasic and biphasic square-wave stimuli, and compared with measured ESD waveforms. Although FT is proposed as a metric of strength, an approximate surrogate is the charge within the largest phase of the current versus time waveform. The approximation is reasonably accurate for monophasic waveforms with phase durations below about 100 µs, and for charge-balanced biphasic square-wave stimuli with phase durations between about 40 and 100 µs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.