Abstract

The aim of the present paper is twofold. Firstly, to assess the absorbed dose in small lesions using Monte Carlo calculations in a scenario of intratumoral injection of 90Y (e.g., percutaneous ablation). Secondly, to derive a practical analytical formula for the calculation of the absorbed dose that incorporates the absorbed fractions for 90Y. The absorbed dose per unit administered activity was assessed using Monte Carlo calculations in spheres of different size (diameter 0.5–20 cm). The spheres are representative of tumor regions and are assumed to be uniformly filled with 90Y. Monte Carlo results were compared with the macrodosimetric approach used for dose calculation in liver radioembolization. The results of this analysis indicate that the use of the analytic model provides dose overestimates below 10% for lesions with diameter larger than approximately 2 cm. However, for lesions smaller than 2 cm the analytic model is likely to deviate significantly (>10%) from Monte Carlo results, providing dose overestimations larger than 50% for lesions of 0.5 cm diameter. In this paper an analytical formula derived from MC calculations that incorporates the absorbed fractions for 90Y is proposed. In a scenario of intratumoral injection of microspheres, the proposed equation can be usefully employed in the treatment planning of spherical lesions of small size (down to 0.5 cm diameter) providing dose estimates in close agreement with Monte Carlo calculations (maximum deviation below 0.5%).

Highlights

  • Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and today multiple treatment modalities exist [1]

  • Based on the clinical experience gained in liver radioembolization, it is reasonable to assume that percutaneous ablation of HCC through the intratumoral injection of an appropriate activity of 90Y has the potential to reduce drastically the chances of local recurrence

  • Calculations were performed both for water spheres (ρ = 1.00 g/cm3) and for spheres made of liver tissue (ρ = 1.05 g/cm3). In both cases, when the lesion diameter drops below 2 cm, a great amount of the β particle energy is delivered outside the sphere

Read more

Summary

Introduction

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and today multiple treatment modalities exist [1]. Based on the clinical experience gained in liver radioembolization, it is reasonable to assume that percutaneous ablation of HCC through the intratumoral injection of an appropriate activity of 90Y has the potential to reduce drastically the chances of local recurrence. In this context, there is growing interest in the development of new intratumoral procedures for HCC throughout a localized administration of 90Y in the form of microspheres mixed with biocompatible compounds [8]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.