Abstract

The dosimetric characteristics of a double-focused miniature multileaf collimator (mMLC) attached to a Philips SL75/5 linear accelerator (linac) have been investigated. Output factors, percentage depth-dose, penumbra, leaf transmission, and leakage between the leaves were measured for the 6 MV x-ray beam on this accelerator. Because leakage both through and between the leaves is minimal, the linac jaws can be kept fixed while the mMLC leaf configuration is modified for different aperture shapes. This allows for accurate output prediction using the equivalent square formalism. Percent depth-dose measured for fields defined by the mMLC show little deviation from the percent depth-dose measured for fields defined by the machine jaws or Lipowitz metal blocks. Because the mMLC matches beam divergence in both directions, allows minimal beam transmission, and has a large source-to-collimator distance, the penumbra is sharper for fields defined by the mMLC than for fields defined by the linac jaws or Lipowitz metal blocks. Based on these data, dose calculations for mMLC-defined fields can be applied with no change in procedures from those used for fields defined using conventional methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.