Abstract
The effects of 10-keV X-rays and 400-keV endpoint-energy bremsstrahlung X-rays on MOS capacitors with SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> or HfO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> gate dielectrics and Al and TaSi gate metallization have been studied using the Monte Carlo simulator, MRED. We compare these calculations with previous results in the literature obtained with other Monte Carlo and discrete ordinates codes, and with experiments on devices with SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> gate dielectrics, and find generally good agreement. There is a significant dose reduction in thin HfO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> layers exposed to 10-keV X-rays, when the HfO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> is surrounded by lower-Z materials (e.g., Si, Al). This dose reduction does not occur in a medium-energy bremsstrahlung X-ray environment; in that case, the dose in a HfO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> gate dielectric can be ~10 times higher than the dose in a SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> dielectric, for the same incident X-ray fluence. These results demonstrate the capability of MRED to assist in the evaluation of dose enhancement and reduction in regions including or nearby high-Z materials in microelectronic materials and devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.