Abstract

We previously showed that infusing rats with a solution of ethyl pyruvate ameliorates intestinal mucosal injury after mesenteric ischemia and reperfusion. Ethyl pyruvate also has been shown to inhibit the expression of various pro-inflammatory cytokines in several animal models of critical illness, but dose-response relationships have not been investigated. Anesthetized C57BL/6 mice were subjected to 60 min of mesenteric ischemia followed by 60 min of reperfusion. After 55 min of ischemia, groups of mice were treated with normal saline or graded bolus doses of ethyl pyruvate dissolved in a calcium-containing balanced salt solution. Some animals (i.e., those in the sham group) were subjected to the anesthetic, but not mesenteric ischemia/reperfusion. Gut mucosal permeability was assessed using an everted gut sac technique. University research laboratory. Mesenteric ischemia/reperfusion significantly increased ileal mucosal permeability to the hydrophilic macromolecule, fluorescein isothiocyanate dextran (molecular mass 4,000 Da). Whereas the lowest dose of ethyl pyruvate evaluated (17 mg/kg) had no effect on gut mucosal permeability, the two highest doses tested (50 and 150 mg/kg) significantly ameliorated the development of ischemia/reperfusion-induced mucosal hyperpermeability to about the same extent. The two highest doses of ethyl pyruvate also significantly ameliorated deficits in ileal serosal and mucosal and hepatic surface microvascular perfusion induced by mesenteric ischemia/reperfusion. Ethyl pyruvate inhibited post-ischemia/reperfusion hepatic NF-kappaB activation and TNF mRNA expression in a dose-dependent fashion. Doses of ethyl pyruvate equal to or greater than 50 mg/kg ameliorate inflammation, microvascular hypoperfusion and gut mucosal damage induced by mesenteric ischemia/reperfusion in mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.