Abstract
The dose calculated using a convolution algorithm should be validated in a simple homogeneous water-equivalent phantom before clinical use. The dose calculation accuracy within a solid water phantom was investigated. The specific Gamma knife design requires a dose rate calibration within a spherical solid water phantom. The TMR10 algorithm, which approximates the phantom material as liquid water, correctly computes the absolute dose in water. The convolution algorithm, which considers electron density miscalculates the dose in water as the phantom Hounsfield units were converted into higher electron density when the original CT calibration curve was used. To address this issue, the electron density of liquid water was affected by modifying the CT calibration curve. The absolute dose calculated using the convolution algorithm was compared with that computed by the TMR10. The measured depth dose profiles were also compared to those computed by the convolution and TMR10 algorithms. A patient treatment was recalculated in the solid-water phantom and the delivery quality assurance was checked. The convolution algorithm and the TMR10 calculate an absolute dose within 1% when using the modified CT calibration curve. The dose depth profile calculated using the convolution algorithms was superimposed on the TMR10 and measured dose profiles when the modified CT calibration curve was applied. The Gamma index was better than 93%. Dose calculation algorithms, which consider electron density, require a CT calibration curve adapted to the phantom material to correctly compute the dose in water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.