Abstract

In this work, we used the Monte Carlo-based TOPAS simulation software to calculate the ambient dose equivalents and annual effective dose due to the secondary neutron field produced in proton therapy, also we introduced a USTC phantom to access the organ equivalent dose. The ambient dose equivalent and annual effective dose were calculated in several positions of interest inside and outside the facility. The simulation results were compared qualitatively to the results of the Empirical Formula, showing that the Empirical Formula calculations overestimated the dose, 28.95 times higher than the MC simulations, on average, which would lead to over shielding. In addition, the highest equivalent dose rate of a single radiation-sensitive organ simulated by TOPAS was 1.50×10-9mSv/a for the eye lens, 2.36×10-3mSv/a for limbs and 1.01×10-3mSv/a for skin, which also meets the limits. Therefore, MC simulation has great advantages in shielding design and safety evaluation. And this work presents a new method to calculate the dose, introducing a more anthropogenic phantom can get more realistic results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.