Abstract

Heteroatom doping effectively tunes the electronic conductivity of transition metal selenides (TMSs) with rapid K+ accessibility in potassium ion batteries (PIBs). Although considerable efforts are dedicated to investigating the relationship between the doping strategy and the resulting electrochemistry, the doping mechanisms, especially in view of the ion and electronic diffusion kinetics upon cycling, are seldom elucidated systematically. Herein, the crystal structure stability, charge/ion state, and bandgap of the active materials are found to be precisely modulated by favorable heteroatom doping, resulting in intrinsically fast kinetics of the electrode materials. Based on the combined mechanisms of intercalation and conversion reactions, electron and K+ ion transfer in Ni‐doped CoSe2 embedded in carbon nanocomposites (Ni‐CoSe2@NC) can be significantly enhanced via electronic engineering. Benefiting from the synthetic controlled Ni grains, the heterointerface formed by the intermediate products of electrochemical reactions in Ni‐CoSe2@NC strengthens the conversion kinetics and interdiffusion process, developing a low‐barrier mesophase with optimized potassium storage. Overall, an electronic tuning strategy can offer deeper atomic insights into the conversion reaction of TMSs in PIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.