Abstract

Cerium substituted BaM hexaferrites BaCexFe12-xO19 (x = 0.0, 0.25, 0.5, 0.75, and 1.0) nano crystallites were synthesized via Sol-gel method. The x-ray diffraction (XRD) patterns were analyzed by Rietveld refinement which confirms the formation of hexagonal structure. The crystalline size was calculated by Debye Scherrer method, W–H method and SSP method. The lattice constant ? found to decrease, this was due to the octahedral site replacing a large radius of Ce3+ ion with a smaller radius Fe3+ ion, While the lattice constant c found increase. The x-ray density observed increases with increasing Ce3+ concentration. Fourier transform infrared spectroscopy (FTIR) confirmed the two frequency bands n1 tetrahedral site and n2 octahedral site in a range between 400–620 cm-1. Impedance analyzer was used to investigate the dielectric properties in a range of 1 MHz – 3 GHz following Maxwell Wagner model. Dielectric constant showed decreasing trend while dielectric loss showed dispersive behavior by increasing frequency and same was that with tangent loss, such behavior was due to Koop's phenomenological theory. AC conductivity exhibits a plane behavior in a low frequency, while dispersive in high frequency. Such behavior was due to grain effect at high frequency. Impedance showed continuous action at high frequency, which is attributed to the release of space charges. The real and imaginary modulus showed variation by increasing frequency, which was due to the occurrence of relaxation phenomenon. As per dielectric research, these ferrites can be utilized in high frequency devices, microwave technologies, and semiconductor devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.