Abstract
The fabrication and morphological, optical, and photoelectrochemical characterization of doped iron oxide films is presented. The complex index of refraction and absorption coefficient of polycrystalline films are determined through measurement and modeling of spectral transmission and reflection data using appropriate dispersion relations. Photoelectrochemical characterization for water photo-oxidation reveals that the conversion efficiencies of electrodes are strongly influenced by substrate temperature during their oblique-angle physical vapor deposition. These results are discussed in terms of the films’ morphological features and the known optoelectronic limitations of iron oxide films for application in solar water splitting devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.