Abstract

The doped 1D Kondo Lattice describes complex competition between itinerant and magnetic ordering. The numerically computed wave vector-dependent charge and spin susceptibilities give insights into its low-energy properties. Similar to the prediction of the large N approximation, gapless spin and charge modes appear at the large Fermi wave vector. The highly suppressed spin velocity is a manifestation of "heavy" Luttinger liquid quasiparticles. A low-energy hybridization gap is detected at the small (conduction band) Fermi wave vector. In contrast to the exponential suppression of the Fermi velocity in the large-N approximation, we fit the spin velocity by a density-dependent power law of the Kondo coupling. The differences between the large-N theory and our numerical results are associated with the emergent magnetic Ruderman-Kittel-Kasuya-Yosida interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.