Abstract

AbstractThe rich molecular design of electron donor (D)–acceptor (A) polymers offers many valuable clues to obtain high‐efficiency hole‐transporting materials (HTMs) for use in perovskite solar cells (PVSCs). The fused aromatic or heteroaromatic units can increase the conjugation of the polymer backbone to facilitate electron delocalization, which increases the rigidity of adjacent units to prevent rotational disorder and lower the reorganization energy, leading to improved carrier mobility and optimized film morphology. In this work, fused‐ring ladder‐type indacenodithiophene and indacenodithieno[3,2‐b]thiophene are used as D units, benzodithiophene‐4,8‐dione as the A unit, and thienothiophene as a π‐bridge to form the D–A polymers PBDTT and PBTTT, respectively. Both polymers exhibit favorable properties as HTMs including suitable energy levels, high hole mobility, and excellent film quality. Both dopant‐free HTMs endow n‐i‐p PVSCs with promising performance and stability. A maximum power conversion efficiency of 20.28% is achieved for PBDTT‐based devices, which is among the highest values reported to date.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.