Abstract

Dopaminergic projections to primary sensorimotor cortex (SMC) have been described anatomically, but their functional role is unknown. The objective here was to characterize how dopamine modulates the somatosensory evoked potential (SEP) and its receptive field in SMC. SEPs were evoked by median and tibial nerve stimulation and recorded using thin-film multielectrode arrays implanted epidurally over the caudal sensorimotor cortex of rats. SEP amplitudes and receptive fields were measured before and after intracortical injection of a D1- (SCH 23390) or a D2-receptor antagonist (raclopride). Both increased maximum SEP amplitudes by 107.5% and 82.1%, respectively (p<0.01), while vehicle application had no effect (5.9% change). SEP latencies and receptive fields remained unchanged. Dopamine antagonists increase the excitability of sensorimotor cortex to afferent signals. Dopamine, therefore, expectedly reduces SMC excitability thereby improving sensory signal-to-noise ratio. Dopaminergic modulation may render SMC circuitry more effective in processing sensory information from different sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.