Abstract

AbstractOcular injuries and their complications represent the most common causes of visual impairment. For ocular surgery, there is an unmet need for highly transparent bioadhesives with superior adhesion, biocompatibility, and regenerative properties. Herein, a novel high‐transparent bioadhesive hydrogel composed of gelatin methacryloyl (GelMA) and dopamine methacrylamide (DMA) is developed by in situ oxidative free‐radical polymerization. This bioadhesive hydrogel overcomes the fundamental weakness of mussel‐inspired adhesive copolymers in clinical practice by combining multiple favorable properties, including high light transmission, mechanical strength, adhesive strength, and biocompatibility. DMA significantly enhances corneal epithelial cells adhesion, proliferation, and migration on GelMA, and prevents the accumulation of reactive oxygen species (ROS) in corneal epithelial cells. In rabbit models of corneal and conjunctiva transplantation, the bioadhesive is able to decrease the inflammatory response and fibrosis formation induced by suture surgical trauma. In addition, the rabbit corneal stromal defect model reveals that the Gel/DMA bioadhesive could effectively seal corneal defects, accelerates corneal re‐epithelialization, and promotes wound healing. Thus, given the advantages of high bioactivity and simple preparation, the Gel/DMA bioadhesive represents a promising strategy for suture‐free ocular repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.