Abstract
The aim of this study was to compare dopamine receptor binding affinities of all currently approved dopamine receptor agonist treatments for Parkinson's disease (PD) in human brain tissue. Alpha-dihydroergocryptine and lisuride displayed higher comparative affinities (Ki=35.4 and 56.7 nM, respectively) for D1 receptors, than the D1/D2 dopamine agonist pergolide (Ki=447 nM). The second generation non-ergot dopamine receptors agonists pramipexole and ropinirole demonstrated no affinity for D1 receptors at concentrations up to 10(-4) M. The ergoline dopamine agonists cabergoline and lisuride displayed the highest affinities for the D2 receptor (Ki=0.61 and 0.95 nM, respectively). Surprisingly, the second generation non-ergot dopamine receptors agonists pramipexole and ropinirole only weakly inhibited binding to D2 receptors (Ki=79.5 and 98.7 microM, respectively using [3H]spiperone). Interestingly we also found that the affinities of cabergoline (Ki=1.27 nM), lisuride (Ki=1.08 nM) and pergolide (Ki=0.86 nM) for the D3 receptor subtype were comparable to that of pramipexole (Ki=0.97 nM). The present results thus support the hypothesis that the antiparkinsonian effect of dopamine receptor agonists is mediated by a more complex interactions with dopamine receptor subtypes than currently believed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.