Abstract

In the present study, we have investigated possible interactions between dopamine and long-term changes in synaptic efficacy induced in layer V pyramidal cells by tetanization of afferents from layer I–II. In the absence of dopamine, we confirmed that high frequency stimulation of excitatory afferents induced long-term potentiation, long-term depression or no change. Inversely, in the presence of dopamine, we have found that the same tetanus led to long-term depression in synaptic transmission in a majority of cells, but no more long-term potentiation. These results suggest that in rat prefrontal cortex, dopamine may determine the direction of activity dependent changes in synaptic efficacy and therefore, plays a fundamental role in the physiology of this structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.